A New Parameter Choice Strategy for Lavrentiev Regularization Method for Nonlinear Ill-Posed Equations
نویسندگان
چکیده
In this paper, we introduced a new source condition and parameter-choice strategy which also gives the known best error estimate. To obtain results used assumptions in earlier studies. Further, studied proposed applied it to method (in finite-dimensional setting) considered George Nair (2017).
منابع مشابه
Iterated Lavrentiev Regularization for Nonlinear Ill-posed Problems
We consider an iterated form of Lavrentiev regularization, using a null sequence (αk) of positive real numbers to obtain a stable approximate solution for ill-posed nonlinear equations of the form F(x)= y, where F : D(F)⊆ X→ X is a nonlinear operator and X is a Hilbert space. Recently, Bakushinsky and Smirnova [“Iterative regularization and generalized discrepancy principle for monotone operato...
متن کاملOn an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems
In the study of the choice of the regularization parameter for Tikhonov regularization of nonlinear ill-posed problems, Scherzer, Engl and Kunisch proposed an a posteriori strategy in 1993. To prove the optimality of the strategy, they imposed many very restrictive conditions on the problem under consideration. Their results are difficult to apply to concrete problems since one can not make sur...
متن کاملA modified Newton-Lavrentiev regularization for nonlinear ill-posed Hammerstein-type operator equations
Recently, a new iterative method, called Newton-Lavrentiev Regularization (NLR) method, was considered by George (2006) for regularizing a nonlinear ill-posed Hammerstein-type operator equation in Hilbert spaces. In this paper we introduce a modified form of the NLR method and derive order optimal error bounds by choosing the regularization parameter according to the adaptive scheme considered ...
متن کاملComparing parameter choice methods for regularization of ill-posed problems
In the literature on regularization, many different parameter choice methods have been proposed in both deterministic and stochastic settings. However, based on the available information, it is not always easy to know how well a particular method will perform in a given situation and how it compares to other methods. This paper reviews most of the existing parameter choice methods, and evaluate...
متن کاملExpanding the Applicability of a Newton-lavrentiev Regularization Method for Ill-posed Problems
We present a semilocal convergence analysis for a simplified NewtonLavrentiev regularization method for solving ill-posed problems in a Hilbert space setting. We use a center-Lipschitz instead of a Lipschitz condition in our convergence analysis. This way we obtain: weaker convergence criteria, tighter error bounds and more precise information on the location of the solution than in earlier stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10183365